Generalized Homogeneous Polynomials for Efficient Template-Based Nonlinear Invariant Synthesis
نویسندگان
چکیده
The template-based method is one of the most successful approaches to algebraic invariant synthesis. In this method, an algorithm designates a template polynomial p over program variables, generates constraints for p = 0 to be an invariant, and solves the generated constraints. However, this approach often suffers from an increasing template size if the degree of a template polynomial is too high. We propose a technique to make template-based methods more efficient. Our technique is based on the following finding: If an algebraic invariant exists, then there is a specific algebraic invariant that we call a generalized homogeneous algebraic invariant that is often smaller. This finding justifies using only a smaller template that corresponds to a generalized homogeneous algebraic invariant. Concretely, we state our finding above formally based on the abstract semantics of an imperative program proposed by Cachera et al. Then, we modify their template-based invariant synthesis so that it generates only generalized homogeneous algebraic invariants. This modification is proved to be sound. Furthermore, we also empirically demonstrate the merit of the restriction to generalized homogeneous algebraic invariants. Our implementation outperforms that of Cachera et al. for programs that require a higher-degree template.
منابع مشابه
Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials
In this paper, we propose and analyze an efficient matrix method based on Bell polynomials for numerically solving nonlinear Fredholm- Volterra integral equations. For this aim, first we calculate operational matrix of integration and product based on Bell polynomials. By using these matrices, nonlinear Fredholm-Volterra integral equations reduce to the system of nonlinear algebraic equations w...
متن کاملA New RSTB Invariant Image Template Matching Based on Log-Spectrum and Modified ICA
Template matching is a widely used technique in many of image processing and machine vision applications. In this paper we propose a new as well as a fast and reliable template matching algorithm which is invariant to Rotation, Scale, Translation and Brightness (RSTB) changes. For this purpose, we adopt the idea of ring projection transform (RPT) of image. In the proposed algorithm, two novel s...
متن کاملInvariant norm quantifying nonlinear content of Hamiltonian systems
Given a Hamiltonian system, one can represent it using a symplectic map. This symplectic map is specified by a set of homogeneous polynomials which are uniquely determined by the Hamiltonian. In this paper, we construct an invariant norm in the space of homogeneous polynomials of a given degree. This norm is a function of parameters characterizing the original Hamiltonian system. Such a norm ha...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملSynthesizing Switching Controllers for Hybrid Systems by Continuous Invariant Generation
We extend a template-based approach for synthesizing switching controllers for semi-algebraic hybrid systems, in which all expressions are polynomials. This is achieved by combining a QE (quantifier elimination)-based method for generating continuous invariants with a qualitative approach for predefining templates. Our synthesis method is relatively complete with regard to a given family of pre...
متن کامل